Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Metabolism ; 146: 155644, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385404

RESUMO

BACKGROUND AND AIMS: Central to the pathogenesis of nonalcoholic fatty liver disease (NAFLD) is the accumulation of lipids in the liver and various fat tissues. We aimed to elucidate the mechanisms by which lipid droplets (LDs) in the liver and adipocytes are degraded by the autophagy-lysosome system and develop therapeutic means to modulate lipophagy, i.e., autophagic degradation of LDs. METHODS: We monitored the process in which LDs are pinched off by autophagic membranes and degraded by lysosomal hydrolases in cultured cells and mice. The autophagic receptor p62/SQSTM-1/Sequestosome-1 was identified as a key regulator and used as a target to develop drugs to induce lipophagy. The efficacy of p62 agonists was validated in mice to treat hepatosteatosis and obesity. RESULTS: We found that the N-degron pathway modulates lipophagy. This autophagic degradation initiates when the molecular chaperones including BiP/GRP78, retro-translocated from the endoplasmic reticulum, is N-terminally (Nt-) arginylated by ATE1 R-transferase. The resulting Nt-arginine (Nt-Arg) binds the ZZ domain of p62 associated with LDs. Upon binding to Nt-Arg, p62 undergoes self-polymerization and recruits LC3+ phagophores to the site of lipophagy, leading to lysosomal degradation. Liver-specific Ate1 conditional knockout mice under high fat diet developed severe NAFLD. The Nt-Arg was modified into small molecule agonists to p62 that facilitate lipophagy in mice and exerted therapeutic efficacy in obesity and hepatosteatosis of wild-type but not p62 knockout mice. CONCLUSIONS: Our results show that the N-degron pathway modulates lipophagy and provide p62 as a drug target to treat NAFLD and other diseases related with metabolic syndrome.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proteólise , Autofagia , Chaperona BiP do Retículo Endoplasmático , Obesidade/metabolismo , Camundongos Knockout
3.
Mol Neurodegener ; 18(1): 41, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355598

RESUMO

BACKGROUND: There are currently no disease-modifying therapeutics for Parkinson's disease (PD). Although extensive efforts were undertaken to develop therapeutic approaches to delay the symptoms of PD, untreated α-synuclein (α-syn) aggregates cause cellular toxicity and stimulate further disease progression. PROTAC (Proteolysis-Targeting Chimera) has drawn attention as a therapeutic modality to target α-syn. However, no PROTACs have yet shown to selectively degrade α-syn aggregates mainly owing to the limited capacity of the proteasome to degrade aggregates, necessitating the development of novel approaches to fundamentally eliminate α-syn aggregates. METHODS: We employed AUTOTAC (Autophagy-Targeting Chimera), a macroautophagy-based targeted protein degradation (TPD) platform developed in our earlier studies. A series of AUTOTAC chemicals was synthesized as chimeras that bind both α-syn aggregates and p62/SQSTM1/Sequestosome-1, an autophagic receptor. The efficacy of Autotacs was evaluated to target α-syn aggregates to phagophores and subsequently lysosomes for hydrolysis via p62-dependent macroautophagy. The target engagement was monitored by oligomerization and localization of p62 and autophagic markers. The therapeutic efficacy to rescue PD symptoms was characterized in cultured cells and mice. The PK/PD (pharmacokinetics/pharmacodynamics) profiles were investigated to develop an oral drug for PD. RESULTS: ATC161 induced selective degradation of α-syn aggregates at DC50 of ~ 100 nM. No apparent degradation was observed with monomeric α-syn. ATC161 mediated the targeting of α-syn aggregates to p62 by binding the ZZ domain and accelerating p62 self-polymerization. These p62-cargo complexes were delivered to autophagic membranes for lysosomal degradation. In PD cellular models, ATC161 exhibited therapeutic efficacy to reduce cell-to-cell transmission of α-syn and to rescue cells from the damages in DNA and mitochondria. In PD mice established by injecting α-syn preformed fibrils (PFFs) into brain striata via stereotaxic surgery, oral administration of ATC161 at 10 mg/kg induced the degradation of α-syn aggregates and reduced their propagation. ATC161 also mitigated the associated glial inflammatory response and improved muscle strength and locomotive activity. CONCLUSION: AUTOTAC provides a platform to develop drugs for PD. ATC161, an oral drug with excellent PK/PD profiles, induces selective degradation of α-syn aggregates in vitro and in vivo. We suggest that ATC161 is a disease-modifying drug that degrades the pathogenic cause of PD.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Autofagia , Proteólise , Células Cultivadas , Encéfalo/metabolismo
4.
Br J Pharmacol ; 180(9): 1247-1266, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36479690

RESUMO

BACKGROUND AND PURPOSE: Paracetamol (acetaminophen)-induced hepatotoxicity is the leading cause of drug-induced liver injury worldwide. Autophagy is a degradative process by which various cargoes are collected by the autophagic receptors such as p62/SQSTM1/Sequestosome-1 for lysosomal degradation. Here, we investigated the protective role of p62-dependent autophagy in paracetamol-induced liver injury. EXPERIMENTAL APPROACH: Paracetamol-induced hepatotoxicity was induced by a single i.p. injection of paracetamol (500 mg·kg-1 ) in C57/BL6 male mice. YTK-2205 (20 mg·kg-1 ), a p62 agonist targeting ZZ domain, was co- or post-administered with paracetamol. Western blotting and immunocytochemistry were performed to explore the mechanism. KEY RESULTS: N-terminal arginylation of the molecular chaperone calreticulin retro-translocated from the endoplasmic reticulum (ER) was induced in the livers undergoing paracetamol-induced hepatotoxicity, and YTK-2205 exhibited notable therapeutic efficacy in acute hepatotoxicity as assessed by the levels of serum alanine aminotransferase and hepatic necrosis. This efficacy was significantly attributed to accelerated degradation of ubiquitin (Ub) conjugates as well as damaged mitochondria (mitophagy) and endoplasmic reticulum (ER-phagy). In primary murine hepatocytes treated with paracetamol, YTK-2205 induced the co-localization of p62+ LC3+ phagophores to the sites of mitophagy and ER-phagy. A similar activity of YTK-2205 was observed with N-acetyl-p-benzoquinone imine, a putative toxic metabolite of paracetamol in Hep3B cells. CONCLUSION AND IMPLICATIONS: Our results elucidated that p62-dependent autophagy plays a key role in the removal of cytotoxic materials such as damaged mitochondria in paracetamol-induced hepatotoxicity. Small molecule ligands to p62 may be developed into drugs to treat this pathological condition.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Masculino , Animais , Camundongos , Acetaminofen/toxicidade , Ligantes , Mitofagia , Retículo Endoplasmático/metabolismo , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
5.
Autophagy ; 19(6): 1642-1661, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36184612

RESUMO

In the N-degron pathway, N-recognins recognize cognate substrates for degradation via the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). We have recently shown that the autophagy receptor SQSTM1/p62 (sequestosome 1) is an N-recognin that binds the N-terminal arginine (Nt-Arg) as an N-degron to modulate autophagic proteolysis. Here, we show that the N-degron pathway mediates pexophagy, in which damaged peroxisomal fragments are degraded by autophagy under normal and oxidative stress conditions. This degradative process initiates when the Nt-Cys of ACAD10 (acyl-CoA dehydrogenase family, member 10), a receptor in pexophagy, is oxidized into Cys sulfinic (CysO2) or sulfonic acid (CysO3) by ADO (2-aminoethanethiol (cysteamine) dioxygenase). Under oxidative stress, the Nt-Cys of ACAD10 is chemically oxidized by reactive oxygen species (ROS). The oxidized Nt-Cys2 is arginylated by ATE1-encoded R-transferases, generating the RCOX N-degron. RCOX-ACAD10 marks the site of pexophagy via the interaction with PEX5 and binds the ZZ domain of SQSTM1/p62, recruiting LC3+-autophagic membranes. In mice, knockout of either Ate1 responsible for Nt-arginylation or Sqstm1/p62 leads to increased levels of peroxisomes. In the cells from patients with peroxisome biogenesis disorders (PBDs), characterized by peroxisomal loss due to uncontrolled pexophagy, inhibition of either ATE1 or SQSTM1/p62 was sufficient to recover the level of peroxisomes. Our results demonstrate that the Cys-N-degron pathway generates an N-degron that regulates the removal of damaged peroxisomal membranes along with their contents. We suggest that tannic acid, a commercially available drug on the market, has a potential to treat PBDs through its activity to inhibit ATE1 R-transferases.Abbreviations: ACAA1, acetyl-Coenzyme A acyltransferase 1; ACAD, acyl-Coenzyme A dehydrogenase; ADO, 2-aminoethanethiol (cysteamine) dioxygenase; ATE1, arginyltransferase 1; CDO1, cysteine dioxygenase type 1; ER, endoplasmic reticulum; LIR, LC3-interacting region; MOXD1, monooxygenase, DBH-like 1; NAC, N-acetyl-cysteine; Nt-Arg, N-terminal arginine; Nt-Cys, N-terminal cysteine; PB1, Phox and Bem1p; PBD, peroxisome biogenesis disorder; PCO, plant cysteine oxidase; PDI, protein disulfide isomerase; PTS, peroxisomal targeting signal; R-COX, Nt-Arg-CysOX; RNS, reactive nitrogen species; ROS, reactive oxygen species; SNP, sodium nitroprusside; UBA, ubiquitin-associated; UPS, ubiquitinproteasome system.


Assuntos
Autofagia , Macroautofagia , Animais , Camundongos , Proteína Sequestossoma-1/metabolismo , Autofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Cisteamina , Cisteína , Ubiquitina/metabolismo , Arginina/metabolismo , Transferases/metabolismo
6.
Mol Cell ; 75(5): 1058-1072.e9, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31375263

RESUMO

The endoplasmic reticulum (ER) is susceptible to wear-and-tear and proteotoxic stress, necessitating its turnover. Here, we show that the N-degron pathway mediates ER-phagy. This autophagic degradation initiates when the transmembrane E3 ligase TRIM13 (also known as RFP2) is ubiquitinated via the lysine 63 (K63) linkage. K63-ubiquitinated TRIM13 recruits p62 (also known as sequestosome-1), whose complex undergoes oligomerization. The oligomerization is induced when the ZZ domain of p62 is bound by the N-terminal arginine (Nt-Arg) of arginylated substrates. Upon activation by the Nt-Arg, oligomerized TRIM13-p62 complexes are separated along with the ER compartments and targeted to autophagosomes, leading to lysosomal degradation. When protein aggregates accumulate within the ER lumen, degradation-resistant autophagic cargoes are co-segregated by ER membranes for lysosomal degradation. We developed synthetic ligands to the p62 ZZ domain that enhance ER-phagy for ER protein quality control and alleviate ER stresses. Our results elucidate the biochemical mechanisms and pharmaceutical means that regulate ER homeostasis.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteólise , Proteína Sequestossoma-1/metabolismo , Animais , Proteínas de Transporte/genética , Retículo Endoplasmático/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Proteína Sequestossoma-1/genética , Ubiquitinação
7.
Autophagy ; 15(4): 735-737, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653391

RESUMO

SQSTM1/p62 facilitates responses to various cellular stresses and has been implicated in human diseases. This protein functions as a major cytoplasmic signaling hub and has multiple binding partners, including arginylated (Nt-R) proteins that are recognized by the ZZ domain of SQSTM1/p62 (SQSTM1/p62ZZ). We have determined the molecular mechanism of Nt-R recognition using a combination of biochemical and NMR approaches and obtained the crystal structure of SQSTM1/p62ZZ in complex with Nt-R. We found that binding of SQSTM1/p62ZZ to Nt-R induces SQSTM1/p62 puncta formation and macroautophagy/autophagy and identified a regulatory linker (RL) region of SQSTM1/p62 that associates with SQSTM1/p62ZZ in vitro. Our findings suggest a mechanism for SQSTM1/p62 autoregulation that can be essential in mediating autophagy.


Assuntos
Autofagia , Humanos , Proteína Sequestossoma-1 , Transdução de Sinais
8.
Nat Commun ; 9(1): 4373, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349045

RESUMO

Autophagic receptor p62 is a critical mediator of cell detoxification, stress response, and metabolic programs and is commonly deregulated in human diseases. The diverse functions of p62 arise from its ability to interact with a large set of ligands, such as arginylated (Nt-R) substrates. Here, we describe the structural mechanism for selective recognition of Nt-R by the ZZ domain of p62 (p62ZZ). We show that binding of p62ZZ to Nt-R substrates stimulates p62 aggregation and macroautophagy and is required for autophagic targeting of p62. p62 is essential for mTORC1 activation in response to arginine, but it is not a direct sensor of free arginine in the mTORC1 pathway. We identified a regulatory linker (RL) region in p62 that binds p62ZZ in vitro and may modulate p62 function. Our findings shed new light on the mechanistic and functional significance of the major cytosolic adaptor protein p62 in two fundamental signaling pathways.


Assuntos
Autofagia/fisiologia , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Linhagem Celular , Cristalografia por Raios X , Citometria de Fluxo , Células HEK293 , Humanos , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ligação Proteica , Proteína Sequestossoma-1/genética , Transdução de Sinais , Espectrometria de Fluorescência
10.
J Cell Sci ; 131(17)2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30111582

RESUMO

The N-end rule pathway is a proteolytic system in which single N-terminal residues of proteins act as N-degrons. These degrons are recognized by N-recognins, facilitating substrate degradation via the ubiquitin (Ub) proteasome system (UPS) or autophagy. We have previously identified a set of N-recognins [UBR1, UBR2, UBR4 (also known as p600) and UBR5 (also known as EDD)] that bind N-degrons through their UBR boxes to promote proteolysis by the proteasome. Here, we show that the 570 kDa N-recognin UBR4 is associated with maturing endosomes through an interaction with Ca2+-bound calmodulin. The endosomal recruitment of UBR4 is essential for the biogenesis of early endosomes (EEs) and endosome-related processes, such as the trafficking of endocytosed protein cargos and degradation of extracellular cargos by endosomal hydrolases. In mouse embryos, UBR4 marks and plays a role in the endosome-lysosome pathway that mediates the heterophagic proteolysis of endocytosed maternal proteins into amino acids. By screening 9591 drugs through the DrugBank database, we identify picolinic acid as a putative ligand for UBR4 that inhibits the biogenesis of EEs. Our results suggest that UBR4 is an essential modulator in the endosome-lysosome system.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endossomos/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas do Citoesqueleto/genética , Endossomos/genética , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Biogênese de Organelas , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases
11.
Proc Natl Acad Sci U S A ; 115(12): E2716-E2724, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507222

RESUMO

The conjugation of amino acids to the protein N termini is universally observed in eukaryotes and prokaryotes, yet its functions remain poorly understood. In eukaryotes, the amino acid l-arginine (l-Arg) is conjugated to N-terminal Asp (Nt-Asp), Glu, Gln, Asn, and Cys, directly or associated with posttranslational modifications. Following Nt-arginylation, the Nt-Arg is recognized by UBR boxes of N-recognins such as UBR1, UBR2, UBR4/p600, and UBR5/EDD, leading to substrate ubiquitination and proteasomal degradation via the N-end rule pathway. It has been a mystery, however, why studies for the past five decades identified only a handful of Nt-arginylated substrates in mammals, although five of 20 principal amino acids are eligible for arginylation. Here, we show that the Nt-Arg functions as a bimodal degron that directs substrates to either the ubiquitin (Ub)-proteasome system (UPS) or macroautophagy depending on physiological states. In normal conditions, the arginylated forms of proteolytic cleavage products, D101-CDC6 and D1156-BRCA1, are targeted to UBR box-containing N-recognins and degraded by the proteasome. However, when proteostasis by the UPS is perturbed, their Nt-Arg redirects these otherwise cellular wastes to macroautophagy through its binding to the ZZ domain of the autophagic adaptor p62/STQSM/Sequestosome-1. Upon binding to the Nt-Arg, p62 acts as an autophagic N-recognin that undergoes self-polymerization, facilitating cargo collection and lysosomal degradation of p62-cargo complexes. A chemical mimic of Nt-Arg redirects Ub-conjugated substrates from the UPS to macroautophagy and promotes their lysosomal degradation. Our results suggest that the Nt-Arg proteome of arginylated proteins contributes to reprogramming global proteolytic flux under stresses.


Assuntos
Arginina/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Proteínas de Ligação a RNA/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína BRCA1/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Hidroxicloroquina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Ubiquitina/metabolismo
12.
Sci Signal ; 11(511)2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295953

RESUMO

BiP and other endoplasmic reticulum (ER)-resident proteins are thought to be metabolically stable and to function primarily in the ER lumen. We sought to assess how the abundance of these proteins dynamically fluctuates in response to various stresses and how their subpopulations are relocated to non-ER compartments such as the cytosol. We showed that the molecular chaperone BiP (also known as GRP78) was short-lived under basal conditions and ER stress. The turnover of BiP was in part driven by its amino-terminal arginylation (Nt-arginylation) by the arginyltransferase ATE1, which generated an autophagic N-degron of the N-end rule pathway. ER stress elicited the formation of R-BiP, an effect that was increased when the proteasome was also inhibited. Nt-arginylation correlated with the cytosolic relocalization of BiP under the types of stress tested. The cytosolic relocalization of BiP did not require the functionality of the unfolded protein response or the Sec61- or Derlin1-containing translocon. A key inhibitor of the turnover and Nt-arginylation of BiP was HERP (homocysteine-responsive ER protein), a 43-kDa ER membrane-integrated protein that is an essential component of ER-associated protein degradation. Pharmacological inhibition of the ER-Golgi secretory pathway also suppressed R-BiP formation. Finally, we showed that cytosolic R-BiP induced by ER stress and proteasomal inhibition was routed to autophagic vacuoles and possibly additional metabolic fates. These results suggest that Nt-arginylation is a posttranslational modification that modulates the function, localization, and metabolic fate of ER-resident proteins.


Assuntos
Aminoaciltransferases/metabolismo , Arginina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Aminoaciltransferases/genética , Autofagia/efeitos dos fármacos , Citosol/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Leupeptinas/farmacologia , Proteínas de Membrana/genética , Células PC-3 , Complexo de Endopeptidases do Proteassoma/metabolismo
14.
EMBO Rep ; 18(1): 150-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993939

RESUMO

Although proteasome inhibitors (PIs) are used as anticancer drugs to treat various cancers, their relative therapeutic efficacy on stem cells vs. bulk cancers remains unknown. Here, we show that stem cells derived from gliomas, GSCs, are up to 1,000-fold more sensitive to PIs (IC50, 27-70 nM) compared with their differentiated controls (IC50, 47 to ¼100 µM). The stemness of GSCs correlates to increased ubiquitination, whose misregulation readily triggers apoptosis. PI-induced apoptosis of GSCs is independent of NF-κB but involves the phosphorylation of c-Jun N-terminal kinase as well as the transcriptional activation of endoplasmic reticulum (ER) stress-associated proapoptotic mediators. In contrast to the general notion that ER stress-associated apoptosis is signaled by prolonged unfolded protein response (UPR), GSC-selective apoptosis is instead counteracted by the UPR ATF3 is a key mediator in GSC-selective apoptosis. Pharmaceutical uncoupling of the UPR from its downstream apoptosis sensitizes GSCs to PIs in vitro and during tumorigenesis in mice. Thus, a combinational treatment of a PI with an inhibitor of UPR-coupled apoptosis may enhance targeting of stem cells in gliomas.


Assuntos
Glioma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...